BRCA1 in cancer, cell cycle and genomic stability.

نویسنده

  • Meena Jhanwar-Uniyal
چکیده

The BRCA1 gene was isolated in 1994; germline mutations of this gene are known to confer susceptibility to breast and ovarian cancer in high-risk families. Since its discovery, several mutations have been identified in this gene; these are scattered throughout the gene, and include insertion and deletion frameshifts, base substitutions, and inferred regulatory mutations. It role in the pathogenesis of breast cancer, which accounts for almost 95%, although unproven to date, cannot be ruled out. The functional inactivation of both copies of this gene in sporadic tumor cells does not follow the traditional mode: the loss of function in BRCA1 is not accompanied by underlying mutation of the gene in tumor cells with loss of heterozygosity for the BRCA1 gene. Several studies now suggest that an alternate mechanism of inactivation, involving promoter hypermethylation that results in reduced expression of the gene, may be common to a significant proportion of sporadic breast and ovarian cancers. BRCA1 as a tumor suppressor plays an important role in maintaining genomic stability. BRCA1 has the ability to interact with numerous proteins and to form complexes that are involved in recognizing and subsequently repairing DNA. BRCA1 contains several functional domains that directly or indirectly interact with a variety of proteins via protein-protein interaction; these include tumor suppressors (BRCA2, p53, Rb and ATM), oncogenes (c-Myc, casein kinase II and E2F), DNA damage repair proteins (RAD50 and RAD51), cell cycle regulators (cyclins and cyclin dependent kinases), transcriptional activators and repressors (RNA polymerase II, RHA, histone deacetylase complex and CtIP), DNA damage-sensing complex and mismatch repair proteins (BRCA1- Associated Surveillance Complex; BASC) and signal transducer and activator of transcription (STAT) among others Formation of foci containing BRCA1 by inherited mutations, or epigenetic mechanisms (promoter methylation) in sporadic cancers leads to a loss of DNA repair ability, disrupts the potential to form complexes with other proteins that are crucial for DNA repair pathways. Thus, BRCA1 plays a significant role in maintaining genomic stability and serves as a tumor suppressor in breast cancer tumorigenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

BRCA1 contributes to cell cycle arrest and chemoresistance in response to the anticancer agent irofulven.

Tumor suppressor gene BRCA1 is frequently mutated in familial breast and ovarian cancer. BRCA1 plays pivotal roles in maintaining genomic stability by interacting with numerous proteins in cell cycle control and DNA repair. Irofulven (6-hydroxymethylacylfulvene, HMAF, MGI 114, NSC 683863) is one of a new class of anticancer agents that are analogs of mushroom-derived illudin toxins. Preclinical...

متن کامل

Both DNA topoisomerase II-binding protein 1 and BRCA1 regulate the G2-M cell cycle checkpoint.

Cell cycle checkpoints play a central role in genomic stability. The human DNA topoisomerase II-binding protein 1 (TopBP1) protein contains eight BRCA1 COOH terminus motifs and shares similarities with Cut5, a yeast checkpoint Rad protein. TopBP1 also shares many features with BRCA1. We report that, when expression of TopBP1 protein is inhibited in BRCA1 mutant cells, mimicking a TopBP1, BRCA1 ...

متن کامل

BRCA1 deficiency exacerbates estrogen-induced DNA damage and genomic instability.

Germline mutations in BRCA1 predispose carriers to a high incidence of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through critical roles in DNA repair, cell-cycle arrest, and transcriptional control. A major question has been why BRCA1 loss or mutation leads to tumors mainly in estrogen-regulated tissues, given that BRCA1 has essential functions in all cell types....

متن کامل

Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function.

The breast and ovarian cancer specific tumor suppressor BRCA1, bound to BARD1, has multiple functions aimed at maintaining genomic stability in the cell. We have shown earlier that the BRCA1/BARD1 E3 ubiquitin ligase activity regulates centrosome-dependent microtubule nucleation. In this study, we tested which domains of BRCA1 and BARD1 were required to control the centrosome function. In the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2003